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Abstract

We develop a computational method based on the Debye scalar potential representation, which efficiently reduces the
solution of Maxwell’s equations to the solution of two scalar Helmholtz equations. One of the key contributions of this
paper is a theory for the translation of Maxwell solutions using such a representation, since the scalar potential form is
not invariant with respect to translations. The translation theory is developed by introducing ‘‘conversion’’ operators,
which enable the representation of the electric and magnetic vector fields via scalar potentials in an arbitrary reference
frame. Advantages of this representation include the fact that only two Helmholtz equations need be solved, and more-
over, the divergence free constraints are satisfied automatically by construction. Truncation error bounds are also pre-
sented. The availability of a translation theory and error bounds for this representation can find application in
methods such as the Fast Multipole Method.

For illustration of the use of the representation and translation theory we implemented an algorithm for the simulation
of Mie scattering off a system of spherical objects of different sizes and dielectric properties using a variant of the T-matrix
method. The resulting system was solved using an iterative method based on GMRES. The results of the computations
agree well with previous computational and experimental results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Perhaps there is no need to stress the necessity for efficient numerical solvers for the Maxwell equations in
the frequency domain, as they are fundamental to many problems in theoretical and applied electromagnetics.
Decomposition of the solutions of these equations into multipole and related series are basic to multiple scat-
tering theory. Due to the vector structure of these equations, the representations involve often unwieldy
expressions including series over the vector spherical harmonics. This leads, first, to rather complicated (long)
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expressions, which themselves can be a source of error, and, second, to excessively large numbers of unknowns
in function representations. However, despite these difficulties, researchers have developed the theory for the
translation of such series with vector spherical harmonics and methods to compute the translation coefficients
(see, e.g., Refs. [23,8,20,6,27]).

It is well-known that any solution of the free-space Maxwell equations can be expressed via two scalar
potentials, which are solutions of the scalar Helmholtz equation (see e.g. [18,14]), which are also known as
the Debye potentials (Debye’s original paper appeared in 1909 [10]). The translation theory for the Helmholtz
equation is relatively well developed both for function representations via multipole-type series and the far
field signature function (see e.g. [22,11,14]). However, to apply this translation theory to the scalar potential
representation of solutions of the Maxwell equations, several issues must be addressed. The purpose of this
paper is to provide such a theory. To demonstrate the theory we apply it to Mie scattering problems and com-
pare results to previous calculations and to experiments. Future applications to the fast-multipole accelerated
solution of integral equation formulations are envisaged.

In some sense the method which we develop in this paper is similar to the method of translation of solutions
of the biharmonic equation that we developed previously [16], where it was shown that any solution of the
biharmonic equation can be expressed as a combination of two solutions of the Laplace equations. However,
when the biharmonic solution is expressed in this form, the translations cannot be done independently. Instead
the two functions must be translated jointly, which can be handled relatively easily by the introduction of the
concept of a sparse ‘‘conversion’’ operator. In fact given a fast-multipole method routine for the Laplace equa-
tion, we show there that using the conversion operators, it can be employed as a fast-multipole method routine
for the biharmonic and polyharmonic equations.

We follow an approach similar to that paper and introduce a potential representation, and the concept of
‘‘conversion’’ operators for the vector Maxwell equations, and show that given a multipole routine for the
scalar Helmholtz equation, a routine for the vector Maxwell equations may be obtained using the conversion
operators. Of course these conversion operators are different from those for the biharmonic equation. A major
difficulty that is faced with the vector representations, of maintaining the divergence free nature of the solu-
tion, is avoided by construction.

The method of scalar potentials can be applied for the solution of different boundary value problems, by
using truncated series representations. In this paper, for illustrating the use of the scalar potentials and the
conversion operators, we demonstrate how they may be used for the solution of multiple scattering problems,
such as multiple scattering off many spheres [4,20,28] using a variant of the T-matrix method [21,24,26] with
solution of the linear system using a GMRES-based iterative solver. We also provide error bounds that allow
selection of the truncation number of the series. The results of the computations satisfy the Maxwell equations
by construction, and are validated by an a posteriori check of the error in satisfying the imposed boundary
conditions. They are also validated by comparisons with the computational and experimental data of Xu
and Gustafson [29,30].

2. Mathematical preliminaries

2.1. The Maxwell equations

In the frequency domain, the phasors of the electric and magnetic field vectors E and H for a monochro-
matic wave of frequency x satisfy the Maxwell equations
r� E ¼ ixlH; r�H ¼ �ix�E; r � E ¼ 0; r �H ¼ 0; ð1Þ

which in the absence of sources and currents are valid in the carrier medium of electric permittivity � and mag-
netic permeability l. As written, these vector equations incorporate eight relations (the equations for the three
components of the electric and magnetic fields, and the divergence free constraints).

The solution of these equations is composed of two fields describing incoming and outgoing waves. The
latter (radiating) waves satisfy the Silver–Müller radiation conditions
lim
r!0
ðl1=2HðradÞ � r� r�1=2EðradÞÞ ¼ 0; lim

r!0
ð�1=2EðradÞ � rþ rl1=2HðradÞÞ ¼ 0; r ¼ jrj; r 2 R3: ð2Þ
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Let the radiating field have all its singularities inside a sphere of radius a, while the incoming waves are regular
by definition everywhere in R3.

Taking the curl of the first Eq. (1), one can see that in a domain free of singularities the electric field vector,
E, satisfies the constrained vector Helmholtz equation
ðr2 þ k2ÞE ¼ 0; r � E ¼ 0; k ¼ x=c; ð3Þ

where k is the wavenumber, c is the speed of light, c ¼ ð�lÞ�1=2. The same equations hold for the magnetic field
vector, H,
ðr2 þ k2ÞH ¼ 0; r �H ¼ 0: ð4Þ

It is not difficult to show (e.g., see [14]) that in any given reference frame the electric and magnetic field vectors
can be expressed via two scalar potentials, /ðrÞ and wðrÞ, that characterize the TE and TM partial wave polar-
ization, respectively:
E ¼ r/� rþr� ðrw� rÞ; H ¼ 1

ixl
ðk2rw� rþr� ðr/� rÞÞ; ð5Þ
where each potential satisfies the scalar Helmholtz equation
ðr2 þ k2Þ/ ¼ 0; ðr2 þ k2Þw ¼ 0: ð6Þ

The decomposition of the electric field (5) is equivalent to Eqs. (3) and (4), and therefore, the two scalar func-
tions / and w completely characterize the electromagnetic field, and all mathematics related to solution of the
Maxwell equations can be expressed in terms of these potentials. We call this method as the ‘‘method of scalar
potentials’’ or ‘‘method of Debye potentials’’ [10]. In this theory we work only with / and w and the actual
values of E and H are obtained as needed via direct application of Eq. (5) or by use of some equivalent oper-
ators acting on the representations in terms of the scalar functions / and w.

2.2. Expansions of solutions over the basis of spherical wave functions

Solutions of the scalar Helmholtz equation can be also decomposed into the incoming and outgoing wave
functions. The latter satisfy the Sommerfeld radiation condition
lim
r!1

r
o/ðradÞ

or
� ik/ðradÞ

 !" #
¼ 0; lim

r!1
r

owðradÞ

or
� ikwðradÞ

 !" #
¼ 0; ð7Þ
which are equivalent to the Silver–Müller conditions (2) (e.g. see [14]). Consider a sphere of radius a and a
reference frame with origin at the center of this sphere. Solutions singular (radiating) and regular inside the
sphere can be expanded as series over the spherical basis functions Sm

n ðrÞ and Rm
n ðrÞ, as
/ðrÞ ¼
X1
n¼0

Xn

m¼�n

/m
n Sm

n ðrÞ or /ðrÞ ¼
X1
n¼0

Xn

m¼�n

/m
n Rm

n ðrÞ ð8Þ
and similarly for wðrÞ. Here
Rm
n ðrÞ ¼ jnðkrÞY m

n ðh;uÞ; Sm
n ðrÞ ¼ hnðkrÞY m

n ðh;uÞ; n ¼ 0; 1; 2; . . . ; m ¼ �n; . . . ; n; ð9Þ

where jnðkrÞ and hnðkrÞ are the spherical Bessel and Hankel functions (of the first kind), and Y m

n ðh;uÞ are the
orthonormal spherical harmonics:
Y m
n ðh;uÞ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� jmjÞ!
ðnþ jmjÞ!

s
P jmjn ðcos hÞeimu;

P jmjn ðlÞ ¼
ð�1Þjmj

2nn!
ð1� l2Þjmj=2 djmjþn

dljmjþn
ðl2 � 1Þn;

n ¼ 0; 1; 2; . . . ; m ¼ �n; . . . ; n;

ð10Þ
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where P jmjn are the associated Legendre function expressed above via the Rodrigues formula. Here and below
we will use Cartesian ðx; y; zÞ and spherical coordinates ðr; h;uÞ related by
r ¼ ðx; y; zÞ ¼ rðsin h cos u; sin h sin u; cos hÞ: ð11Þ

The traditional way to represent the vectors E and H is to insert expansions of type (8) directly into Eq. (5)

and obtain, e.g. for the radiating solution:
EðrÞ ¼
X1
n¼0

Xn

m¼�n

½/m
n MðsÞm

n ðrÞ þ wm
n NðsÞmn ðrÞ�;

MðsÞm
n ðrÞ ¼ rSm

n ðrÞ � r; NðsÞmn ðrÞ ¼ r �MðsÞm
n ðrÞ;

ð12Þ
where MðsÞm
n ðrÞ and NðsÞmn ðrÞ are singular spherical vector basis functions, and the /m

n and wm
n are coefficients of

the basis functions (not to be confused with the scalar potential functions / and w). This requires heavy use of
vector algebra and the translation theory for vector functions. While such theories and methods are available
[8,6,27] one of the purposes of the method of scalar potentials is to reduce the complexity by avoiding oper-
ations with vector basis functions.

The expansions (8) specify mappings f/ðrÞ;wðrÞg¢ fU;Wg, where U ¼ f/m
n g, W ¼ fwm

n g can be thought as
matrices, or, more properly, vectors (with a proper alignment of the coefficients) and can be called as function
representations in the space of expansion coefficients. When these representations are available in some
domain, the functions / and w, and so E and H can be computed.

2.3. Expressions for operators as matrices relating expansion coefficients

Let A be a linear operator acting on functions, so that b/ ¼A½/�. Further, let the functions b/ and / be
expressed in series over functional bases (which can be the same or different), as in Eq. (9). In this case the
operator A can be represented as a matrix, A, acting on the coefficients of the expansion of / in its basis
and transforming them in to the expansion coefficients of b/ in its basis. Thus, the action of the operator
on the functions can be written in the equivalent forms
b/ ¼A½/�¢ bU ¼ AU: ð13Þ

The entries of the matrix A as well as the vectors bU and U will, in general, depend on the particular expansion
bases, and we should indicate this explicitly or implicitly. Since the entries of the vectors U ¼ f/m0

n0 g andbU ¼ fb/m
n g are each characterized by two indices, the entries of the matrix A relating them can be characterized

by four indices, Amm0

nn0 ¼ ðAÞ
mm0

nn0 .

2.3.1. Differential operators

The first type of linear operators that are important for our development are differential operators. When
we differentiate functions, we usually expand the original function and its derivative over the same basis.
A remarkable property of the scalar Helmholtz equation is that the matrices representing the differential oper-
ators are the same when expressed in either the basis fRm

n ðrÞg or the basis fSm
n ðrÞg [14]. The basic first-order

differential operators here are
Dz ¼
1

k
o

oz
; Dx�iy ¼

1

k
o

ox
� i

o

oy

� �
;

Dt ¼
1

k
t � r ¼ ðtx þ ityÞDx�iy þ ðtx � ityÞDx�iy þ tzDz;

ð14Þ
where t ¼ ðtx; ty ; tzÞ is some constant vector. These operators can be represented in the space of coefficients by
matrices Dz;Dx�iy , and Dt, respectively. We remark that the matrices corresponding to these operators are very
sparse, and may be written as [14]
ðDzÞmm0

nn0 ¼ dmm0 ðam
n dn0;nþ1 � am

n0dn0þ1;nÞ;
ðDxþiyÞmm0

nn0 ¼ dm0;m�1ðb�m
n dn0 ;n�1 � bm�1

n0 dn0 ;nþ1Þ;
ðDx�iyÞmm0

nn0 ¼ dm0;mþ1ðbm
n dn0 ;n�1 � b�m�1

n0 dn0 ;nþ1Þ;

ð15Þ
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where dmm0 is the Kronecker symbol, and am
n and bm

n are real coefficients defined as
am
n ¼ a�m

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1þ mÞðnþ 1� mÞ
ð2nþ 1Þð2nþ 3Þ

s
; for n P jmj; am

n ¼ 0; for n < jmj; ð16Þ

bm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� m� 1Þðn� mÞ
ð2n� 1Þð2nþ 1Þ

s
for 0 6 m 6 n; ð17Þ

bm
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� m� 1Þðn� mÞ
ð2n� 1Þð2nþ 1Þ

s
for � n 6 m < 0;

bm
n ¼ 0 for jmj > n:
Instead of using sparse matrices to represent operators, it is sometimes simpler to represent their action via
simple relations between the function coefficients. For example, the action of operator Dt can be written as
b/m
n ¼

X1
n0¼0

Xn0

m0¼�n0
ðDtÞmm0

nn0 /
m0

n0

¼ ðtx þ ityÞðbm
n /mþ1

n�1 � b�m�1
nþ1 /mþ1

nþ1 Þ þ ðtx � ityÞðb�m
n /m�1

n�1 � bm�1
nþ1 /m�1

nþ1 Þ þ tzðam
n /m

nþ1 � am
n�1/

m
n�1Þ: ð18Þ
2.3.2. Translation operators

The second type of linear operator that we wish to express explicitly are the translation operators. In the
functional space the translation operator generated by a constant translation vector t is defined as
b/ ¼TðtÞ½/�; b/ðrÞ ¼ /ðrþ tÞ: ð19Þ
When both / and b/ are represented in basis fSm
n ðrÞg the matrices representing the multipole-to-multipole

translation operator can be denoted as ðSjSÞðtÞ. The multipole-to-local operator can be written as ðSjRÞðtÞ
(/ is in fSm

n ðrÞg and b/ is in fRm
n ðrÞg), and the local-to-local translation operator as ðRjRÞðtÞ (both / and b/

are in basis fRm
n ðrÞg. We further remark that the entries of the matrices ðSjSÞðtÞ and ðRjRÞðtÞ for the Helm-

holtz equation are the same for the same translation vector t [14]. Further, for the Helmholtz equation all
matrices for arbitrary t commute which each other (except for t ¼ 0, which is a singular point for the multipole
to regular translation operator ðSjRÞðtÞ), and also commute with the matrices representing the differential
operators. This observation is the basis for a fast translation method, based on sparse matrix decomposition
of the dense translation matrix, and which was first introduced in [14].

Another fast translation method is based on decomposition of the translation vector into a pair of rotations
interspersed with translation along the polar axis direction. If needed all entries of the translation matrices can
be computed using fast recursive procedures [5,13], which are much faster than direct expression of the matrix
coefficients via the 3-j Wigner or similar symbols.

We call the translation operators for the case when the translation direction coincides with the polar z axis,
t ¼ tiz ¼ ð0; 0; tÞ, as coaxial translation operators. The representation of these operators is more compact,
since for coaxial translations the order of the spherical basis functions, m, does not change. In other words,
the entries of the coaxial translation matrices have a factor dmm0 , as for the matrix Dz (see Eq. (15)), which in
fact is the coaxial differentiation matrix, since in this case Dt ¼ Dz. So performing a matrix–vector product
with the coaxial translation matrix requires fewer operations than the general translation and can be used
in decompositions of the general translation matrix [20]. The coaxial translation operators also can be com-
puted by a faster recursive procedures than those needed in the general case [13].
2.3.3. Rotation Operators

The third type of operators, which we mention are the rotation operators, defined as
b/ ¼ RotðQÞ½/�; b/ðbrÞ ¼ /ðrÞ; br ¼ Qr; ð20Þ
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where r and br are coordinates of the radius-vector in the original and rotated reference frame, assuming that
the rotation transform in three dimensions is performed with real 3 · 3 rotation matrix Q. The rotation oper-
ator can also be represented by a matrix, RotðQÞ. The entries of this matrix are proportional to dnn0 . In other
words, the rotation transform does not change the degree of the spherical basis functions. This makes the rota-
tion operator more compact than general translation operator, and this can be used in decompositions of the
translation matrix. Also the entries of matrix RotðQÞ can be computed by fast recursive procedures [13,14].

As mentioned before, a particularly important type of decomposition of a translation operator is the rota-
tion-coaxial translation decomposition, where we decompose the general translation operation into a rotation
of the reference frame to align the z axis with the direction of translation vector t, then translate along the z

axis (‘‘coaxial translation’’), and then rotate back to obtain the original axes orientation.
If p is the truncation number at which we truncate all expansions with n ¼ 0; . . . ; p � 1;m ¼ �n; . . . ; n (so

we hold only p2 terms in each of the expansions (8)), the general translation matrix has p4 entries, and a com-
putation of a general translation via a matrix–vector product requires Oðp4Þ operations, while the rotation-
coaxial translation decomposition requires Oðp3Þ operations.

3. Method of scalar potentials

3.1. Translations of vector functions

We must extend the translation operators for scalar Helmholtz functions introduced above to the case of
the vector Maxwell functions. Since
bEðrÞ ¼ Eðrþ tÞ ¼ r � ðrb/Þ þ r �r� ðrbwÞ þ r � ðtb/Þ þ r �r� ðtbwÞ;bE ¼TðtÞ½E�; b/ ¼TðtÞ½/�; bw ¼TðtÞ½w�; ð21Þ
we see that the translated function is not represented in the same form as the original function in terms of the
Debye potentials. At first glance, representing the translations via scalar potentials (5), thus seems a non-trivial
task. In fact, to retain the scalar potential form for bEðrÞ in a basis centered at r ¼ 0 we must express it in the
form
 bEðrÞ ¼ r � ðr~/Þ þ r �r� ðr~wÞ; ð22Þ

for some other potentials ~/ and ~w. Due to linearity of all operations the functions ~/ and ~w should linearly
depend on b/ and bw. Such a linear dependence is provided by conversion operators, which are defined then as
~/ ¼ C11½b/� þ C12½bw�;
~w ¼ C21½b/� þ C22½bw�: ð23Þ
The conversion operators can be represented as matrices acting on coefficients over the spherical wave func-
tion basis. It is natural to represent ð~/; ~wÞ in the same basis as ðb/; bwÞ, and in this case it is not difficult to see
that the entries of the conversion operators will not depend on which basis fSm

n ðrÞg or fRm
n ðrÞg we use. Indeed,

as mentioned above the differential operators for scalar functions are the same for the both bases, while the
conversion operators can be expressed in terms of such operators. So Eq. (23) imply
eU ¼ C11

bU þ C12
bW;eW ¼ C21

bU þ C22
bW: ð24Þ
Note that due to the symmetry in representation of the electric and magnetic field vectors (5) (the replacement
of / with ðixlÞ�1k2w and w with ðixlÞ�1/ results in the same conversion operation. For the magnetic field
vector, we have
C11 ¼ C22; C12 ¼ k2C21: ð25Þ

Below we derive explicit expressions for these matrices. We show that these matrices are sparse and the

computational cost of the conversion procedure is low in terms of memory and time.
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3.2. Conversion operators

Let us represent the functions ~/ and ~w in the form
~/ ¼ b/ þ /0; ~w ¼ bw þ w0: ð26Þ
As follows from Eqs. (21) and (22) the functions marked with primes satisfy
r� ðr/0Þ þ r �r� ðrw0Þ ¼ r � ðtb/Þ þ r �r� ðtbwÞ: ð27Þ
The scalar product of both sides of this equation with the vector r yields
r � r � r� ðrw0Þ ¼ r � r � ðtb/Þ þ r � r � r� ðtbwÞ; ð28Þ
due to the relations
r�r� ðrw0Þ ¼ rðw0 þ r � rw0Þ þ k2rw0; ð29Þ
r �r� ðtbwÞ ¼ rðt � rbwÞ þ k2tbw; ð30Þ
r � r � ðtb/Þ ¼ �ðr� tÞ � rb/: ð31Þ
To prove relation (29), we note that
r2ðxw0Þ ¼ xr2w0 þ 2rx � rw0 þ w0r2x ¼ xr2w0 þ 2
ow0

ox
: ð32Þ
A similar expression holds if we replace the coordinate x with y or z. Therefore, for vector r ¼ ixxþ iyy þ izz we
have
r2ðrw0Þ ¼ rr2w0 þ 2rw0: ð33Þ

Now using the well-known expression for the Laplacian of the vector function via the curl of curl and gradient
of divergence and the fact that w0 satisfies the scalar Helmholtz equation, we obtain
r�r� ðrw0Þ ¼ r½r � ðrw0Þ� � r2ðrw0Þ ¼ rðw0r � rþ r � rw0Þ � rr2w0 � 2rw0

¼ rð3w0 þ r � rw0 � 2w0Þ þ k2rw0 ¼ rðw0 þ r � rw0Þ þ k2rw0: ð34Þ
Introducing the following differential operators
Drr ¼ r2 o
2

or2
þ 2r

o

or
þ k2r2; Dr�t ¼ ðr� tÞ � r;

Dr�t ¼ ðr � rÞðt � rÞ þ k2ðr � tÞ;
ð35Þ
we can rewrite Eq. (28) in the form
Drr½w0� ¼ �Dr�t½b/� þDr�t½bw�: ð36Þ

Consider the action of operator Drr on a spherical basis function (9) (since the singular and regular basis func-
tions satisfy the same recurrence relations, it is sufficient to consider only one of them, say the regular basis
functions):
Drr½Rm
n ðrÞ� ¼ Y m

n ðh;uÞDrr½jnðkrÞ� ¼ Y nðh;uÞnðnþ 1ÞjnðkrÞ ¼ nðnþ 1ÞRm
n ðrÞ: ð37Þ
This holds because the spherical Bessel (and Hankel) functions are eigenfunctions of Drr corresponding to the
eigenvalue nðnþ 1Þ. This means that in the space of expansion coefficients, for expansions of type (8), Drr is
represented by a diagonal matrix Drr, with entries
ðDrrÞmm0

nn0 ¼ nðnþ 1Þdmm0dnn0 ; n; n0 ¼ 0; 1; . . . ; m ¼ �n; . . . ; n; m0 ¼ �n0; . . . ; n0: ð38Þ

This also shows that the function w0 is determined up to an arbitrary function of r (indeed r� ðrf ðrÞÞ ¼ 0),
which in case of spherical basis functions is proportional to the zero-order Bessel function. This function can
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be deliberately set to zero, since in any case it does not contribute either to EðrÞ, or to HðrÞ. Accepting this
convention, we can define the inverse operator D�1

rr as an operator, represented by the diagonal matrix
ðD�1
rr Þ

mm0

nn0 ¼
1

nðnþ 1Þ dmm0dnn0 ; n; n0 > 0; ðD�1
rr Þ

00
00 ¼ 0: ð39Þ
The matrix representations of the operators Dr�t and Dr�t are more involved and we show how one can
derive expressions for their entries in Appendix A. Similar to Eq. (18), it is convenient to write the results
of the action of these matrices on the coefficients of some function v:
bvm
n ¼

X1
n0¼0

Xn0

m0¼�n0
ðDr�tÞmm0

nn0 v
m0

n0 ¼
i

2
ðtxþiycm

n vmþ1
n þ tx�iycm�1

n vm�1
n � 2mtzv

m
n Þ; tx�iy ¼ tx � ity ð40Þ

bvm
n ¼

X1
n0¼0

Xn0

m0¼�n0
ðDr�tÞmm0

nn0 v
m0

n0

¼ � k
2

txþiy ½nb�m�1
nþ1 vmþ1

nþ1 þ ðnþ 1Þbm
n vmþ1

n�1 � þ tx�iy ½nbm�1
nþ1 vm�1

nþ1 þ ðnþ 1Þb�m
n vm�1

n�1 �
�

� 2tz½nam
n vm

nþ1 þ ðnþ 1Þam
n�1v

m
n�1�
�
; ð41Þ
where cm
n are real coefficients describing infinitesimal rotation, defined as
cm
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� mÞðnþ mþ 1Þ

p
for 0 6 m 6 n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� mÞðnþ mþ 1Þ

p
for � n 6 m < 0

0 for jmj > n

8><>: : ð42Þ
These expressions yield the following expressions, which represent the action of the conversion matrices:
~wm
n ¼ bwm

n �
1

2nðnþ 1Þ iðtxþiycm
n
b/mþ1

n þ tx�iycm�1
n
b/m�1

n � 2mtz
b/m

n Þ þ kftxþiy ½nb�m�1
nþ1

bwmþ1
nþ1 þ ðnþ 1Þbm

n
bwmþ1

n�1 �g
n

þ ktx�iy ½nbm�1
nþ1
bwm�1

nþ1 þ ðnþ 1Þb�m
n
bwm�1

n�1 � � 2ktz½nam
n
bwm

nþ1 þ ðnþ 1Þam
n�1
bwm

n�1�
o
;

n ¼ 1; 2; . . . ; m ¼ �n; . . . ; n; tx�iy ¼ tx � ity ; ð43Þ

~/m
n ¼ b/m

n �
1

2nðnþ 1Þ ik2ðtxþiycm
n
bwmþ1

n þ tx�iycm�1
n
bwm�1

n � 2mtz
bwm

n Þ þ ktxþiy ½nb�m�1
nþ1

b/mþ1
nþ1 þ ðnþ 1Þbm

n
b/mþ1

n�1 �
n

þ ktx�iy ½nbm�1
nþ1
b/m�1

nþ1 þ ðnþ 1Þb�m
n
b/m�1

n�1 � � 2ktz½nam
n
b/m

nþ1 þ ðnþ 1Þam
n�1
b/m

n�1�
o
;

n ¼ 1; 2; . . . ; m ¼ �n; . . . ; n; tx�iy ¼ tx � ity ; ð44Þ

where the latter relation between ~/m

n and ðb/m
n ;
bwm

n Þ follows from the symmetry relation (25).

3.3. Rotation-coaxial translation decomposition

We remark that the rotation transform defined by (20) does not change the form of decomposition (5) as E

and H are treated as physical vectors, which are invariant objects with respect to the selection of the reference
frame, and r and br are referred to the same point in the physical space. Thus in the rotated reference frame we
have for the electric field vector
bEðbrÞ ¼ r � ðbrb/Þ þ r �r� ðbrbwÞ: ð45Þ

Furthermore, expressions for the conversion operators (43) and (44) are substantially simpler for coaxial
translations, t ¼ tiz:
~wm
n ¼ bwm

n þ
t

nðnþ 1Þ fim
b/m

n þ k½nam
n
bwm

nþ1 þ ðnþ 1Þam
n�1
bwm

n�1�g;

~/m
n ¼ b/m

n þ
t

nðnþ 1Þ fik
2mbwm

n þ k½nam
n
b/m

nþ1 þ ðnþ 1Þam
n�1
b/m

n�1�g;

n ¼ 1; 2; . . . ; m ¼ �n; . . . ; n:

ð46Þ
So the rotation-coaxial translation decompositions again appears to be an efficient computational procedure.
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We also note that using the notation (24) and (25) we can see that general translation preserving the scalar
potential form (5) can be written as
eUeW

 !
¼ C11ðtÞ k2C21ðtÞ

C21ðtÞ C11ðtÞ

 !
TðtÞ 0

0 TðtÞ

� �
U

W

� �
; ð47Þ
where TðtÞ is the translation matrix for scalar functions (e.g. ðRjRÞðtÞ). In the rotation-coaxial translation
decomposition this matrix can be represented as
TðtÞ ¼ Rot�1ðQðtÞÞTcoaxðtÞRotðQðtÞÞ: ð48Þ

On the other hand we have
eUeW

 !
¼ Rot�1ðQðtÞÞ 0

0 Rot�1ðQðtÞÞ

 !
Ccoax

11 ðtÞ k2Ccoax
21 ðtÞ

Ccoax
21 ðtÞ C11ðtÞ

 !

�
TcoaxðtÞ 0

0 TcoaxðtÞ

� �
RotðQðtÞÞ 0

0 RotðQðtÞÞ

� �
U

W

� �
: ð49Þ
It is not difficult to directly check, that Eqs. (47)–(49) result in the following relations
C11ðtÞ ¼ Rot�1ðQðtÞÞCcoax
11 ðtÞRotðQðtÞÞ; C21ðtÞ ¼ Rot�1ðQðtÞÞCcoax

21 ðtÞRotðQðtÞÞ; ð50Þ

where the action of coaxial conversion operators Ccoax

11 ðtÞ and Ccoax
21 ðtÞ follows from Eqs (46). We also can note

that the operator Drr defined by Eq. (35) is invariant with respect to the rotation transform, which preserves
the length of the radius-vector. So decompositions (50) can be combined with the form (36) for conversion
operation, resulting in
Dr�t ¼ tRot�1ðQðtÞÞDr�iz RotðQðtÞÞ; Dr�t ¼ tRot�1ðQðtÞÞDr�iz RotðQðtÞÞ; ð51Þ
where the matrices Dr�iz and Dr�iz do not depend on t as they represent the operators
Dr�iz ¼ ðr� izÞ � r; Dr�iz ¼ ðr � rÞðiz � rÞ þ k2ðr � izÞ: ð52Þ
3.4. Computation of components of vector fields

One more operation for the method of scalar potentials needs to be specified. Given scalar functions / and
w we should have an efficient procedure to compute components of electric and magnetic field vectors accord-
ing Eq. (5). While this can be done directly using Eq. (5), finite differences, and samples of / and w, more accu-
rate, fast, and consistent way to do this is to obtain expansion coefficients for the components of these vectors
using expansion coefficients of the scalar potentials.

Consider the projection of the electric field vector on some direction t. We have (29), where w0 can be
replaced with w, (35), (14), and the fact that ðt � rÞðr � rÞ ¼ ðr � rÞðt � rÞ þ t � r:
Et ¼ t � E ¼ t � ½r/� rþr� ðrw� rÞ� ¼ ðr� tÞ � r/þ t � ½rðwþ r � rwÞ þ k2rw�
¼ ðr� tÞ � r/þ 2t � rwþ ½ðr � rÞðt � rÞ þ k2ðr � tÞ�w ¼ Dr�t½/� þ 2kDt½w� þDr�t½w�: ð53Þ
As Et satisfies the scalar Helmholtz equation, this function can be expanded into the series over the same func-
tional basis as / and w. Denoting respective expansion coefficients as ðEtÞmn and using expressions for repre-
sentations of operators Dr�t, Dt, and Dr�t, we obtain
ðEtÞmn ¼
1

2
iðtxþiycm

n /mþ1
n þ tx�iycm�1

n /m�1
n � 2mtz/

m
n Þ

�
�k txþiy ½ðnþ 2Þb�m�1

nþ1 wmþ1
nþ1 þ ðn� 1Þbm

n wmþ1
n�1 �

�
þ tx�iy ½ðnþ 2Þbm�1

nþ1 wm�1
nþ1 þ ðn� 1Þb�m

n wm�1
n�1 � � 2tz½ðnþ 2Þam

n wm
nþ1 þ ðn� 1Þam

n�1w
m
n�1�
��
: ð54Þ
The same type of expression can be written for the projection of the magnetic field vector, ðHtÞmn by replacing /

with ðixlÞ�1k2w and w with ðixlÞ�1/. For convenience of the reader, we list the expansion coefficients for the
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Cartesian components of the electric field vector, which follow from Eq. (54) by setting ðtx; ty ; tzÞ ¼
ð1; 0; 0Þ; ð0; 1; 0Þ; and ð0; 0; 1Þ, respectively:
ðExÞmn ¼
i

2
½cm�1

n /m�1
n þ cm

n /mþ1
n �

� k
2
½ðnþ 2Þbm�1

nþ1 wm�1
nþ1 þ ðn� 1Þb�m

n wm�1
n�1 þ ðnþ 2Þb�m�1

nþ1 wmþ1
nþ1 þ ðn� 1Þbm

n wmþ1
n�1 �;

ðEyÞmn ¼ �
1

2
½�cm�1

n /m�1
n þ cm

n /mþ1
n �

þ ik
2
½ðnþ 2Þbm�1

nþ1 wm�1
nþ1 þ ðn� 1Þb�m

n wm�1
n�1 � ðnþ 2Þb�m�1

nþ1 wmþ1
nþ1 � ðn� 1Þbm

n wmþ1
n�1 �;

ðEzÞmn ¼ �im/m
n þ k½ðnþ 2Þam

n wm
nþ1 þ ðn� 1Þam

n�1w
m
n�1�:

ð55Þ
Note also that E � r is a scalar function, that satisfies the Helmholtz equation, and according to Eqs. (5), (29),
and (35) it is simply related to function w:
r � E ¼ Drr½w�; ðr � EÞmn ¼ nðnþ 1Þwm
n : ð56Þ
Similarly,
r � ðr � EÞ ¼ Drr½/�; ½r � ðr � EÞ�mn ¼ nðnþ 1Þ/m
n : ð57Þ
The latter two expressions specify operations, which in some sense are inverse to (55). Indeed, while Eq. (55)
allow us to get E from given / and w, Eqs. (56) and (57) can be used for determination of / and w from
given E.

Again as in the case of conversion operators, we can see that physical components of the fields can be com-
puted using rapid procedures, and can be represented via sparse matrices.
4. Representation of elementary solutions

4.1. Plane wave expansions

The method of Debye potentials can be used for solution of different electromagnetic scattering problems.
In typical formulations the incident field is taken in the form of a plane wave:
E ¼ ðs� qÞeiks�r; ð58Þ

where s is the direction of wave propagation and q is an arbitrary unit vector. To represent this field in the
form (5) we can take the scalar product of the electromagnetic vector and r to obtain
Drr½w� ¼ r � E ¼ r � ðs� qÞeiks�r ¼ �ðr� qÞ � seiks�r ¼ � 1

ik
ðr� qÞ � reiks�r: ð59Þ
Consider the Gegenbauer expansion for the plane-wave
eiks�r ¼ 4p
X1
n¼0

Xn

m¼�n

inY �m
n ðsÞRm

n ðrÞ: ð60Þ
Thus we have
� 1

ik
ðr� qÞ � reiks�r ¼

X1
n¼0

Xn

m¼�n

Am
n Rm

n ðrÞ; ð61Þ
where
Am
n ¼ �

4pin

k
1

2
½ðqx þ iqyÞcm

n Y �m�1
n ðsÞ þ ðqx � iqyÞcm�1

n Y �mþ1
n ðsÞ� � mqzY

�m
n ðsÞ

� �
: ð62Þ
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Using the inversion of the operator Drr in the space of expansion coefficients (39), we obtain
wm
n ¼ �

4pin

nðnþ 1Þk
1

2
½ðqx þ iqyÞcm

n Y �m�1
n ðsÞ þ ðqx � iqyÞcm�1

n Y �mþ1
n ðsÞ� � mqzY

�m
n ðsÞ

� �
;

n ¼ 1; 2; . . . ; m ¼ �n; . . . ; n:

ð63Þ
To determine the function / we take the curl of the electric field vector:
r� E ¼ r� ½ðs� qÞeiks�r� ¼ ikðs� pÞeiks�r; p ¼ s� q: ð64Þ

We have then:
Drr½/� ¼ r � ðr � EÞ ¼ ikr � ½s� ðs� qÞ�eiks�r ¼ �ik½r� ðs� qÞ� � seiks�r ¼ �½r� ðs� qÞ� � reiks�r: ð65Þ

We obtain then similar to the previous result coefficients for function /:
/m
n ¼ �

4pinþ1

nðnþ 1Þ
1

2
½ðpx þ ipyÞcm

n Y �m�1
n ðsÞ þ ðpx � ipyÞcm�1

n Y �mþ1
n ðsÞ� � mpzY

�m
n ðsÞ

� �
;

n ¼ 1; 2; . . . ; m ¼ �n; . . . ; n:

ð66Þ
4.2. Electric and magnetic dipoles

Another elementary solution of the Maxwell equations in a homogeneous medium is produced by a point
singularity (point current source). This field, known as the field of Hertzian dipole of moment p, produces the
electric field vector
EðrÞ ¼ Iþrr
k2

� �
� ½pGðrÞ� ¼ pGþ 1

k2
rðp � rGÞ; ð67Þ
where I and $$ are the unity and differentiation dyadic tensors, and GðrÞ is the free-space Green’s function for
scalar Helmholtz equation, for a source centered at the origin of the reference frame:
GðrÞ ¼ eikr

4pr
; ðr2 þ k2ÞGðrÞ ¼ �dðrÞ; r ¼ jrj: ð68Þ
Consider the representation of the field of the dipole (67) via scalar potentials (5). First we note that for the
field (67) the function / � 0 (as this function is determined up to an arbitrary function of the distance r ¼ jrj).
This is not difficult to show, since we have from Eqs. (67) and (57):
Drr½/� ¼ r � ðr � EÞ ¼ r � ðrG� pÞ ¼ 1

r
oG
or

r � ðr� pÞ ¼ 0: ð69Þ
Eqs. (67) and (57) yield then
Drr½w� ¼ r � E ¼ ðr � pÞGþ 1

k2
ðr � rÞðp � rGÞ ¼ 1

k2
Dr�p½G�: ð70Þ
In the basis of singular spherical functions fSm
n ðrÞg the function GðrÞ is represented by expansion coefficients

Gm
n :
Gm
n ¼

ik

ð4pÞ1=2
dm0dn0; n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n GðrÞ ¼ ik

ð4pÞ1=2
S0

0ðrÞ ¼ G0
0S0

0ðrÞ
 !

: ð71Þ
Representation (41) of operator Dr�p shows then that for function Dr�p½G� only expansion coefficients corre-
sponding to degree n ¼ 1 are non-zero, and, in fact, are dipoles for the scalar Helmholtz equation. So, using
inversion (39) of operator Drr we obtain
wm
n ¼ �dn1

1

2k
fðpx þ ipyÞbm

1 Gmþ1
0 þ ðpx � ipyÞb�m

1 Gm�1
0 � 2pza

m
0 Gm

0 g; n ¼ 0; 1; . . . ; m ¼ �n; . . . ; n: ð72Þ
Inserting here expressions for differentiation coefficients (16) and (17) and for Gm
n (71) we obtain then the for-

mulae for non-zero expansion coefficients of function w.
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w�1
1 ¼

py � ipx

ð24pÞ1=2
; w0

1 ¼
ipz

ð12pÞ1=2
; w1

1 ¼
py þ ipx

ð24pÞ1=2
: ð73Þ
Note, that the electric dipole can also be represented in the form:
wðrÞ ¼ � 1

k2
p � rGðrÞ: ð74Þ
This can be shown comparing Eqs. (72) and (18) to represent operator p � r. One can also perform an exercise
with vector algebra to show that r� ðrw� rÞ ¼ E for w and E given by expressions (74) and (67). Taking
into account (74) we can rewrite (67) in the form
E ¼ pG�rw: ð75Þ

Similar expressions can be obtained for fictitious point magnetic currents, where HðrÞ is represented in form

(67). In this case we should have w ¼ 0, while / should be a sum of scalar dipoles with moments proportional
to that given by Eq. (73).

5. Multiple scattering from spheres

To demonstrate how the method of scalar potentials can be efficiently applied for solution of scattering
problems we will provide a solution of a classical problem of scattering off spheres (e.g. [4,20,28]). We also
draw attention to a corresponding calculation for the scalar Helmholtz equation presented in [12]. This
requires solution of a boundary value problem for Maxwell’s equations. Assume that in general we have N

dielectric spheres with radii aq of electric permittivity �q and magnetic permeability lq respectively, and whose
centers are located at r0q, q ¼ 1; . . . ;N . In the absence of spheres the electromagnetic field is a given incident
field, ðEin;HinÞ, while the presence of scatterers generates the scattered field ðEscat;HscatÞ, in the domain exter-
nal to the spheres we have
E ¼ Ein þ Escat; H ¼ Hin þHscat; ð76Þ

and respective decomposition of scalar potentials / and w.

On the surface of the qth scatterer, Sq, we have transmission conditions
ðnq � EÞSq
¼ ðnq � EqÞSq

; ðnq �HÞSq
¼ ðnq �HqÞSq

; ð77Þ
where nq is the surface normal, and ðEq;HqÞ is the electromagnetic field inside the qth scatterer.

5.1. Scattering from a single sphere

For a single sphere the electromagnetic scattering problem was considered by Mie [31], who provided a
solution in the form of Mie series, i.e. series for electric and magnetic field vectors via vector spherical basis
functions of type (12). Below we provide a solution of the same problem using scalar potentials.

5.1.1. Boundary conditions for scalar potentials

Consider a reference frame with the origin at the center of sphere of radius a. Denote ðEint;HintÞ the field
inside the sphere. Let then E and Eint be represented in the form (5), ðr; h;uÞ be the spherical coordinates, and
/� /intjr¼a ¼ /aðh;uÞ; w� wintjr¼a ¼ waðh;uÞ;
o/
or

				
r¼a

� o/int

or

				
r¼a

¼ /0aðh;uÞ;
ow
or

				
r¼a

� owint

or

				
r¼a

¼ w0aðh;uÞ:
ð78Þ
Then we can express n� ðE� EintÞjr¼a via these functions and normal derivatives. Indeed, the first boundary
condition (77) in terms of scalar potentials can be written as
r�r� ðrð/� /intÞÞ þ r�r�r� ðrðw� wintÞÞjr¼a ¼ 0: ð79Þ

We have
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r/�r/intjr¼a ¼ /0air þr/a: ð80Þ

Since
r�r� ðr/Þ ¼ r� ðr/� rÞ ¼ r2r/� rðr � r/Þ; ð81Þ

we obtain
r�r� ðrð/� /0ÞÞjr¼a ¼ a2ð/0air þr/aÞ � a2/0air ¼ a2r/a: ð82Þ

Then we have
rðwþ r � rwÞjr¼a ¼ ir
o

or
wþ r

ow
or

� �
þ 1

r
ih

o

oh
wþ r

ow
or

� �
þ 1

r sin h
iu

o

ou
wþ r

ow
or

� �				
r¼a

¼ ir
o

or
wþ r

ow
or

� �				
r¼a

þr wþ a
ow
or

				
r¼a

� �
: ð83Þ
So, using the first vector identity from Eq. (29) we obtain
r�r�r� ðrðw� w0ÞÞjr¼a ¼ air �rðwa þ aw0aÞ: ð84Þ

We can rewrite the boundary conditions then as
ar/a þ ir �rðwa þ aw0aÞ ¼ 0: ð85Þ

Since for spherical basis vectors we have ir � ih ¼ iu, ir � iu ¼ �ih the above relation can be rewritten in com-
ponent form as
a sin h
o/a

oh
¼ o

ou
ðwa þ aw0aÞ;

a
sin h

o/a

ou
¼ � o

oh
ðwa þ aw0aÞ: ð86Þ
We can then separate / and w by cross-differentiation:
o

ou
1

sin h
o/a

ou

� �
þ o

oh
sin h

o/a

oh

� �
¼ 0;

o

ou
1

sin h
o

ou
ðwa þ aw0aÞ

� �
þ o

oh
sin h

o

oh
ðwa þ aw0aÞ

� �
¼ 0:

ð87Þ
The Beltrami operator is
r2
ðh;uÞ ¼

1

sin h
o

oh
sin h

o

oh

� �
þ 1

sin2 h

o2

ou2
: ð88Þ
So we obtain
r2
ðh;uÞ/a ¼ 0; r2

ðh;uÞðwa þ aw0aÞ ¼ 0: ð89Þ
The spherical harmonics Y m
n ðh;uÞ are eigenfunctions of the Beltrami operator with eigenvalues �nðnþ 1Þ.

Hence, we have equalizing to zero each harmonic (excluding zero):
/ajr¼a ¼ 0; wa þ aw0a ¼ 0; ð90Þ

or
/jr¼a ¼ /intjr¼a; wþ a
ow
or

� �				
r¼a

¼ wint þ a
owint

or

 !					
r¼a

: ð91Þ
Note that in case of perfect conductor the field inside the sphere is zero, and, therefore, the right hand sides of
Eq. (91) should be set to zero.

Now we note that for dielectric spheres the same consideration applies to the vector of magnetic field, where
the function / should be replaced by k2

ixl w, while the function w should be replaced by 1
ixl / (see (5)). From Eq.

(91) we have then
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�wjr¼a ¼ �intwintjr¼a;
1

l
/þ a

o/
or

� �				
r¼a

¼ 1

lint
/int þ a

o/int

or

 !					
r¼a

; ð92Þ
where we noticed that for a given frequency
1

clk
¼ 1

xl
;

k2

xl
¼ x

c2l
¼ x�: ð93Þ
5.1.2. T-matrix

The T-matrix relates coefficients of the incident and scattered fields (e.g. see [24]). In terms of scalar poten-
tials this relation can be found from the boundary conditions (91) and expansions of the scalar potentials over
the spherical basis functions. Since the zero-order harmonics should be zero, these expansions are
/in ¼
X1
n¼1

Xn

m¼�n

/ðinÞmn Rm
n ðrÞ; win ¼

X1
n¼1

Xn

m¼�n

wðinÞmn Rm
n ðrÞ;

/scat ¼
X1
n¼1

Xn

m¼�n

/ðscatÞm
n Sm

n ðrÞ; wscat ¼
X1
n¼1

Xn

m¼�n

wðscatÞm
n Sm

n ðrÞ;

/int ¼
X1
n¼1

Xn

m¼�n

/ðintÞm
n Rm

n ðmrÞ; wint ¼
X1
n¼1

Xn

m¼�n

wðintÞm
n Rm

n ðmrÞ; m ¼ kint

k
;

ð94Þ
where kint is the wavenumber for the field inside the sphere, m is the relative refractive index.
Now we note that due to completeness and orthogonality of the spherical harmonics the relations for sur-

face functions (91) apply to each harmonic independently. For each n and m this provides a system of four
linear equations with respect to four unknowns /ðscatÞm

n ;/ðintÞm
n ;wðscatÞm

n ;wðintÞm
n . To resolve the system in simpler

form, we introduce the Ricatti–Bessel and Ricatti–Hankel functions
gnðzÞ ¼ zjnðzÞ; fnðzÞ ¼ zhnðzÞ: ð95Þ
In this case
/ðscatÞm
n ¼ �

mgnðkaÞg0nðkintaÞ � lint

l g0nðkaÞgnðkintaÞ
mfnðkaÞg0nðkintaÞ � lint

l f0nðkaÞgnðkintaÞ
/ðinÞmn ;

wðscatÞm
n ¼ �

mgnðkaÞg0nðk
intaÞ � �int

�
g0nðkaÞgnðkintaÞ

mfnðkaÞg0nðkintaÞ � �int

�
f0nðkaÞgnðkintaÞ

wðinÞmn ;

/ðintÞm
n ¼ m

lint

l
fnðkaÞg0nðkaÞ � f0nðkaÞgnðkaÞ

mfnðkaÞg0nðk
intaÞ � lint

l f0nðkaÞgnðkintaÞ
/ðinÞmn ;

wðintÞm
n ¼ m

fnðkaÞg0nðkaÞ � f0nðkaÞgnðkaÞ
mfnðkaÞg0nðkintaÞ � �int

�
f0nðkaÞgnðkintaÞ

wðinÞmn :

ð96Þ
The coefficients relating /ðscatÞm
n and /ðintÞm

n to /ðinÞmn are the Lorenz–Mie coefficients for the TE partial wave
polarization, and the coefficient relating wðscatÞm

n and wðintÞm
n to wðinÞmn are the Lorenz–Mie coefficient for the

TM partial wave polarization (in optics approximation lint ¼ l, �int ¼ m2� is usually employed – in this case
the Lorenz–Mie coefficients depend only on ka and m).

Note that expressions for the internal field coefficients can be simplified using the Wronskian for spherical
Bessel functions
fnðkaÞg0nðkaÞ � f0nðkaÞgnðkaÞ ¼ kafhnðkaÞ½jnðkaÞ þ kaj0nðkaÞ� � ½hnðkaÞ þ kah0nðkaÞ�jnðkaÞg

¼ ðkaÞ2½hnðkaÞj0nðkaÞ � h0nðkaÞjnðkaÞ� ¼ �i: ð97Þ
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So
/ðintÞm
n ¼ �im

lint

l
mfnðkaÞg0nðk

intaÞ � lint

l
f0nðkaÞgnðkintaÞ

� ��1

/ðinÞmn ;

wðintÞm
n ¼ �im mfnðkaÞg0nðk

intaÞ � �
int

�
f0nðkaÞgnðkintaÞ

� ��1

wðinÞmn :

ð98Þ
We checked that the obtained solution coincides with the Mie solution. For this purpose we took the inci-
dent field in the form of plane wave (58) and found expansion coefficients for corresponding scalar potentials
using Eqs. (63) and (66). Further we computed coefficients the Lorenz–Mie coefficients and determined the
expansion coefficients for the scalar potentials of the scattered field according to Eq. (96). Evaluation of
the scattered electric and magnetic fields was performed using truncated expansions of the x, y, and z field
components over the singular spherical basis functions, where the expansion coefficients were computed using
Eq. (55).

5.1.3. Error bounds

In computations we truncate all series for / and w up to the degree n ¼ p � 1. The error due to such a trun-
cation can be estimated as follows. We note that the truncated solution satisfies Maxwell’s equations, the scat-
tered field is radiating, and the only deficiency is the error in the boundary conditions on the scatterer surface.
As the complex amplitudes for all modes up to n ¼ p � 1 are exact, while the modes of the scattered and the
internal fields are zero for n P p the error is only due to the boundary values of the incident field for modes
n P p. Function EðinÞ on the scatterer surface can be represented in the form
EðinÞjr¼a ¼
X1
n¼1

EðinÞn ðs0ÞjnðkaÞ; EðinÞn ðs0Þ ¼
Xn

m¼�n

EðinÞmn Y m
n ðs0Þ; r ¼ rs0; js0j ¼ 1: ð99Þ
The magnitudes of the surface functions EðinÞn ðsÞ are proportional to the amplitude of the incident field. Con-
sider a typical field, e.g. a unit amplitude ðjqj ¼ 1Þ incident plane wave (58), for which we have using (60)
jEðinÞn ðs0Þj ¼ 4pðs� qÞin
Xn

m¼�n

Y �m
n ðsÞY m

n ðs0Þ
					

					 ¼ jð2nþ 1Þðs� qÞinP nðs � s0Þj 6 2nþ 1; ð100Þ
where Pn are the Legendre polynomials and we used the addition theorem for spherical harmonics, jP nj 6 1,
and js� qj ¼ 1. The truncation error then is bounded as
j�pj ¼
X1
n¼p

EðinÞn ðs0ÞjnðkaÞ
					

					 6X1
n¼p

jEðinÞn ðs0ÞjjjnðkaÞj 6
X1
n¼p

ð2nþ 1ÞjjnðkaÞj: ð101Þ
Because of j jnðkaÞ j6 ðkaÞn=½ð2nþ 1Þ!!�, [1], these series can be generally bounded as
j�pj 6
X1
n¼p

ðkaÞn

ð2n� 1Þ!! <
ka
2

� � X1
n¼p�1

ðkaÞn

2nn!
¼ eka=2

ðp � 1Þ!
ka
2

� �p

; ð102Þ
since the latter sum can be treated as the residual term of the Taylor series for the exponent and bounded by
Cauchy’s formula. Even though this result is formally valid for any ka and, in fact, it shows that the series
converges absolutely and uniformly, as j�pj ! 0 at ka!1, the practical value of this estimate is for low
and moderate ka. Indeed the term in the right hand side of Eq. (102) decays only for p > eka=2, while for
ka� 1 a tighter bound can be established.

This follows from the fact that the spherical Bessel functions jnðkaÞ decay exponentially as functions of
gðaÞn ¼ ðkaÞ�1=3ðn� kaþ 1=2Þ. An analysis of this decay can be found, e.g. in [14] (pp. 427–430), which yields
for gn � 1 (in fact the large g asymptotics are realized already at moderate values of gn like gn J 2, see [14]) the
following estimate
j�pjK ð2p þ 1ÞjjpðkaÞjK p2=3

ðkaÞ1=2
exp � 1

3
ð2gðaÞp Þ

3=2

� �
; gðaÞp ¼

p � kaþ 1=2

ðkaÞ1=3
: ð103Þ
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For high frequencies, ka� 1, p 	 ka, and prescribed j�pj ¼ � we can determine then
p J kaþ 1

2
3 ln

1

�
þ 1

2
lnðkaÞ

� �2=3

ðkaÞ1=3
; ka� 1: ð104Þ
Note that the term proportional to lnðkaÞ can usually be dropped (at �ka
 1 and due to small numerical coef-
ficient) Such type of dependences and approximations based on them can be found in literature (e.g. [7]). Obvi-
ously the same analysis applies to the magnetic field.
5.2. Scattering from several spheres

To check the derived translation relations we considered the problem of scattering from several spheres.
Solution of this problem for scalar case (acoustic scattering) using multipole reexpansions was obtained in
Ref. [12] and, e.g. in Ref. [20] for the EM case. In the EM case it is convenient to use two component vectors
for representation of expansion coefficients, where the first component corresponds to the potential / and the
second to the potential w. For scatterer q we can write then
Uscat
q

Wscat
q

 !
¼

Tð/Þq 0

0 TðwÞq

 !
Uin;eff

q

Win;eff
q

 !
; ð105Þ
where Tð/Þq and TðwÞq are diagonal matrices of Lorenz–Mie coefficients (T-matrices) for the qth scatterer, while
Uin;eff

q and Win;eff
q are the coefficients of the effective incident field for this scatterer. The latter coefficients can be

thought as a sum of coefficients for the actual incident field (e.g. taken in the form of plane wave) and coef-
ficients due to other scatterers. So we can write
Uin;eff
q

Win;eff
q

 !
¼

Uin
q

Win
q

 !
þ
X
q0 6¼q

C11ðr0q0qÞ k2C21ðr0q0qÞ
C21ðr0q0qÞ C11ðr0q0qÞ

 !
�
ðSjRÞðr0q0qÞ 0

0 ðSjRÞðr0q0qÞ

 !
Uscat

q0

Wscat
q0

 !
; ð106Þ
where r0q0q ¼ r0q � r0q0 is a vector directed from the center of scatterer q 0 to scatterer q and we used representation
of the translation operator in form (47) with multipole-to-local (SjR) translation operator.

One can substitute Eq. (106) into Eq. (105) to obtain a linear system of type
LA ¼ Ain; L ¼ T�1 � gðSjRÞ; ð107Þ
where A is a vector stacking expansion coefficients ðUscat
q ;Wscat

q Þ; q ¼ 1; . . . ;N , Ain is the vector of incident field

coefficients, T is the diagonal T-matrix composed of Tð/Þq and TðwÞq ; q ¼ 1; . . . ;N , and gðSjRÞ denotes translation
operator, which is composed from blocks of scalar translation operators and conversion matrices. This system
can be solved directly using standard methods. In practice, we use truncation of the vectors and matrices with
truncation number p to have p2 expansion coefficients for each scatterer. This results in the system of size 2Np2.
Computation of entries of the translation matrices takes OðN 2p4Þ operations and direct solution (e.g. using

Gauss elimination or LU-decomposition) can be done in OððNp2Þ3Þ operations. This complexity prevents
one from solving problems with large N and p and some other methods should be used in this case. For exam-
ple, the computational work can be reduced via an iterative method to OðN 2p3N iterÞ, where N iter is the number
of iterations, if we use the rotation-coaxial translation decomposition. Indeed in this case each iteration re-
quires just one matrix–vector multiplication involving the system matrix L. As Eq. (107) shows, this consists
of diagonal ðT�1Þ matrix multiplication and multiplication by the matrix gðSjRÞ. The latter operation can be

performed for expense of ð2NÞ2p3 operations, if instead of (47) we use the decomposition (49). This method
works well for N K 100, while for larger N methods for matrix–vector multiplication linear with respect to
N (or N log N ), such as fast multipole methods (e.g. see [7,19,14,15]) or other speed up techniques [25] must
be employed. We do not consider such techniques in this paper.
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5.2.1. Error bounds

For the case of multiple scatterers the idea of the error estimation is the same as for a single scatterer with
the remark that the effective, not actual, incident field is truncated. This field is a superposition of two fields:
the true incident field (e.g. a plane wave) for which the error can be estimated as for a single scatterer (see Eq.
(101)), and truncation of the high degree modes of each scattered field, Escat;q0 ðrÞ; q0 ¼ 1; . . . ;N ; q0 6¼ q, reex-
panded about the center of the given scatterer q. Despite the fact that each of these fields consists of p � 1
modes of n,
Escat;q0 ðrÞ ¼
Xp�1

n¼1

Xn

m¼�n

Eðscat;q0Þm
n Sm

n ðr� r0q0 Þ; ð108Þ
the translated expansion will contain an infinite number of modes, as we have
Escat;q0 ðrÞ ¼
X1
n¼1

Xn

m¼�n

bEðscat;q0Þm
n Rm

n ðr� r0qÞ;

bEðscat;q0Þm
n ¼

Xp�1

n0¼1

Xn0

m0¼�n0
ðSjRÞmm0

nn0 ðr0q0qÞE
ðscat;q0Þm0
n0 ; n ¼ 1; 2; . . .

ð109Þ
If the truncated linear system is solved exactly, then the first p � 1 modes for these series are determined ex-
actly, and the error in the electric field on the boundary of scatterer q will be
j�ðqÞp j ¼ j�inðqÞ
p þ

X
q0 6¼q

�ðq
0qÞ

p j 6 j�inðqÞ
p j þ

X
q0 6¼q

j�ðq0qÞp j;

�ðq
0qÞ

p ¼
X1
n¼p

Xn

m¼�n

bEðscat;q0Þm
n Rm

n ðr� r0qÞ; jr� r0qj ¼ aq;
ð110Þ
where j�inðqÞ
p j is the magnitude of the error due to the incident field truncation (101).

To evaluate this error we introduce surface function for mode n of each scatterer
Eðscat;q0Þ
n ðs0Þ ¼

Xn

m¼�n

Eðscat;q0Þm
n Y m

n ðs0Þ; js0j ¼ 1; n ¼ 1; 2; . . . ; q0 ¼ 1; . . . ;N : ð111Þ
The translation errors �ðq
0qÞ

p now can be estimated using the technique developed in Ref. [14]. For this purpose
we combine Eqs. (109) and (110) to have:
j�ðq0qÞp j ¼
Xp�1

n0¼1

d
ðq0qÞ
n0

					
					 6Xp�1

n0¼1

jdðq
0qÞ

n0 j;

d
ðq0qÞ
n0 ¼

X1
n¼p

jnðkaqÞ
Xn

m¼�n

Xn0

m0¼�n0
ðSjRÞmm0

nn0 ðr0q0qÞE
ðscat;q0Þm0
n0 Y m

n ðs0Þ; r� r0q ¼ aqs0:

ð112Þ
The following error bound then holds (see Appendix B):
jdðq
0qÞ

n0 j < ð2n0 þ 1Þan0 max
s0
jEðscat;q0Þ

n0 ðs0Þj�sðq0qÞ
p ; �sðq0qÞ

p ¼
X1
n¼p

ð2nþ 1ÞjjnðkaqÞjjhnðkbq0qÞj;

an0 ¼
1; n0 6 kaq0

ep
2n0�1


 �1=2jjn0 ðkaq0 Þj�1
; n0 > kaq0 ;

(
bq0q ¼ rq0q � aq0 :

ð113Þ
Note then that �sðq0qÞ
p is nothing, but a uniform bound for the truncation error of the multipole expansion

about the center of scatterer q of the monopole source located at the closest to scatterer q point on the surface
of scatterer q 0 and evaluated at the surface of scatterer q:
h0ðkðbq0q � aqÞÞ ¼
X1
n¼0

ð2nþ 1ÞjnðkaqÞhnðkbq0qÞ: ð114Þ



N.A. Gumerov, R. Duraiswami / Journal of Computational Physics 225 (2007) 206–236 223
Function �sðq0qÞ
p which is the residual term of the Gegenbauer series has been studied in detail in the literature

(e.g. Refs. [9,14]), where both strong bounds and approximations, which are closer to the computational re-
sults, are established. Particularly it was found in Ref. [14] that for moderate spacings between the spheres the
relation between �sðq0qÞ

p and p can be well approximated by
p ¼ 1

ln dq0q
ln

d3=2
q0q

�
sðq0qÞ
p kaqðdq0q � 1Þ3=2

þ 1

" #4

þ kaq þ
1

2
3 ln

1

�
sðq0qÞ
p d

 !2=3

ðkaqÞ1=3

24 3548<:
9=;;

dq0q ¼
bq0q

aq
:

ð115Þ
For the present analysis, however, we need to express �sðq0qÞ
p via p, for which purpose this formula is not so

convenient. So in Appendix B we derived the following approximation:
�sðq0qÞ
p K p1=3

d1=2
q0q kaq

exp � 1

3
ðð2gðaÞp Þ

3=2 � ð2gðbÞp Þ
3=2Þ

� �
;

gðbÞp ¼
ðkbq0qÞ�1=3ðp � kbq0q þ 1=2Þ; p > kbq0q � 1=2

0; p 6 kbq0q � 1=2;

(
gðaÞp ¼

p � kaq þ 1=2

ðkaqÞ1=3
:

ð116Þ
We note then that jjnðkaqÞj exponentially decays for n > kaq, while jhnðkbq0qÞj exponentially grows for
n > kbq0q, as functions of n. The characteristic scale for the decay region of jjnðkaqÞj is n� kaq 	 ðkaqÞ1=3.
Therefore, if kbq0q � kaq 	 ðkaqÞ1=3 the rate of exponential convergence slows down and the truncation number
increases substantially to provide the same error. Putting here bq0q ¼ dq0qaq we can determine that this happens
if dq0q � 1 	 ðkaqÞ�2=3, in which case Eq. (116) provides for kaq � 1
�sðq0qÞ
p K

p1=3

kaq
expð�ðdq0q � 1Þð2kaqÞ1=2ðp þ 1=2� kaqÞ1=2Þ; dq0q � 1 	 ðkaqÞ�2=3 
 1; ð117Þ
which provides the characteristic scale for the decay region: n� kaq 	 ðdq0q � 1Þ�2ðkaqÞ�1. This shows that the
error cannot be bounded for dq0q ¼ 1, which can also be seen from its definition (113) as jjnðkaqÞjjhnðkaqÞj 	
n�1, n� kaq, and the series diverges. In fact, numerical tests show that even for the case of touching spheres
at sufficiently large p the error on the boundary tends to zero, except at the touching point [15], where in any
case the normal to the joint sphere surface is not defined. However, to prove or disprove that a more involved
technique is required, as in the present case we bounded the error uniformly on the surface. We also mention
that the increase of the error as dq0q decreases has a clear meaning that more modes are required to represent
the field of the scatterer q0 via spherical harmonics centered at q as the distance between them decreases.

Further we note that absolute and uniform convergence of series (108) on the surface of scatterer q0 requires
max
s0
jEðscat;q0Þ

n0 ðs0Þj ¼ oðjn0hn0 ðkaq0 Þj�1Þ; n0 ! 1:
Since n0jjn0 ðkaqÞjjhn0 ðkaqÞj ¼ Oð1Þ for n0 > kaq0 we obtain from Eq. (113):
jdðq
0qÞ

n0 j ¼ �sðq0qÞ
p oððn0Þ1=2Þ; n0 > kaq0 : ð118Þ
Hence substituting Eqs. (118) and (113) into finite sum (112) and assuming p � kaq0 	 ðkaq0 Þ1=3 	 p1=3, we
obtain
j�ðq0qÞp j 6
Xp�1

n0¼1

jdðq
0qÞ

n0 j ¼
X½kaq0 �

n0¼1

jdðq
0qÞ

n0 j þ
Xp�1

n0¼½kaq0 �
jdðq

0qÞ
n0 jK �sðq0qÞ

p ½Eðscat;q0Þ
max ðkaq0 Þ2 þ oððkaq0 Þ5=6Þ� 	 Eðscat;q0Þ

max ðkaq0 Þ2�sðq0qÞ
p ;

ð119Þ
where
Eðscat;q0Þ
max ¼ max

n0
max

s0
jEðscat;q0Þ

n0 ðs0Þj; n0 6 kaq0 : ð120Þ
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From Eqs. (110) and (119) we can obtain the following bound for the N sphere case
j�ðqÞp j 6 j�inðqÞ
p j þ

X
q0 6¼q

Eðscat;q0Þ
max ðkaq0 Þ2�sðq0qÞ

p 6 j�inðqÞ
p j þ ðN � 1ÞEðscatÞ

max ðkamaxÞ2�sðqÞ
p;max; ð121Þ
where EðscatÞ
max , amax, and �sðqÞ

p;max are the maximum values of these parameters over all scatterers. We note that er-
ror �sðq0qÞ

p substantially depends on the spacing between the scatterers and is much larger for neighbor scatterers
if there are many scatterers in the field. So for large N a more accurate bound than (121) can be obtained,
which treats the neighbor and remote scatterers differently. In the case of two equal spheres of radius a with
separation parameter d ¼ b=a exposed to a plane wave we have according to Eqs. (121), (116), and (103)
j�ð1Þp j 	 j�ð2Þp jK
p2=3

ðkaÞ1=2
þ C

p1=3ka

d1=2
exp

1

3
ð2gðbÞp Þ

3=2

� �" #
exp � 1

3
ð2gðaÞp Þ

3=2

� �
; ð122Þ
where C is some constant of order 1.
Finally we note that in the bounds obtained for components of the electric or magnetic field p should be

increased by 1 to get bounds for the Debye potentials, as the nþ 1th mode of / and w is required to obtain
the nth mode of E and H.
5.3. Numerical tests

In numerical tests we performed computations of scattering off a spatial distributions of N scatterers of
equal or different size. The truncation number p was selected according to
p ¼ ½kamax� þ p0ðkamax; �; dÞ; ð123Þ

where [ ] denotes integer part, p0 depends on the acceptable error of computation, �, maximum sphere radius,
amax ¼ maxfaqg, and separation between the spheres, d ¼ minfbq=aqg, where bq is the distance from the center
of sphere q to the closest point on the neighbor sphere ðd P 1Þ. Such dependences were studied for the scalar
case [15], and in the present study we used these results as a guide for selection of p. Also we obtained theo-
retical error bounds for solution of the problem. However, for every computed case at some p we performed a

posteriori error check, to ensure that the solution is correct and made a comparison with the theoretical
predictions.

The basis for the a posteriori error check is the following. As / and w satisfy the scalar Helmholtz equation,
the expansion coefficients for components of the electric field (55) (and similarly for magnetic field) ensure that
the EM field is divergence free. Therefore, all errors (truncation, round-off, iteration) are related to the bound-
ary conditions alone. To check that the obtained fields are actually solutions of the boundary value problem
for the Maxwell equation, we sampled the entire boundary (of all scatterers) with M points, ym, at which we
computed the following errors for the boundary conditions for electric field
�ðbcÞ
m ¼ jnðymÞ � ½EðymÞ � EintðymÞ�j

1
M

P
mjEðymÞj

2
� 1=2

; �ðbcÞ
1 ¼ max

m
�ðbcÞ

m ; �
ðbcÞ
2 ¼ 1

M

X
m

j�ðbcÞ
m j

2

" #1=2

: ð124Þ
A similar error measure was computed for the magnetic field as well. All computations reported below were
performed in double precision.

5.3.1. Single sphere

Scattering from a single sphere is classical Mie scattering case, which solutions are investigated thoroughly
(see, e.g. [3]). We validated our computations by comparisons of some standard cases. As a benchmark case we
considered scattering off a perfect conductor, in which case Eint ¼ 0 and so instead of general boundary con-
ditions (77) it is sufficient to use n� E ¼ 0. This also can be considered as a limiting case with �int !1,
lint ! 0. To measure the error we sampled the surface with a equiangular grid with respect to the spherical
angles h and u and performed computations for a range of ka and corresponding values of the truncation
numbers p. Some results of error measurements are shown in Fig. 1.
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For computations we used an incident field in the form of plane wave (58), where the electric field vector
had polarization direction p ¼ s� q (usually we directed axes to have s ¼ ð0; 0; 1Þ, p ¼ ð1; 0; 0Þ). Some exam-
ple of computation of distribution of parameters on the scatterer surface is shown in Fig. 1(left). Here the
arrows show the direction of the wave vector, s, and of the polarization vector, p. The plotted value is the
dimensionless energy density of the electromagnetic field, e ¼ 1

2
ðjEj2 þ jHj2Þ, where E and H are the dimen-

sionless electric and magnetic vectors (set � ¼ l ¼ 1). Fig. 1(right) shows �ðbcÞ
1 defined by Eq. (124) for a

21� 20 surface grid which we used for error measurement. This error depends on ka and p or p0, which is
defined by Eq. (123). The curves of constant �ðbcÞ

1 divide the ðka; p0Þ plane into domains shown in shades of
gray. We also plotted the dependence for usually recommended criterion for selection of pðkaÞ (e.g. [2])
Fig. 1.
inciden
in bou
used b
p ¼ kaþ 4ðkaÞ1=3 þ 3 ð125Þ

(one can determine p0 from this using Eq. (123)). As the figure shows the error in boundary conditions in this
case is somewhere between 10�6 and 10�4, which also slightly depends on ka. We also checked error bounds
(102) and (104) for the errors in range j�pj ¼ 10�8 � 10�2 (only case j�pj ¼ 10�2, which is typical, is plotted in
Fig. 1) and found an excellent agreement of the computed results and with Eq. (102) for ka K 1. However at
ka� 1 this substantially overestimates the actual error. On the other hand the high frequency asymptotics
(104) underestimate the error at low ka, while show a satisfactory estimate at ka� 1 (they may slightly under-
estimate or overestimate the actual error). Also we found that Eq. (103) is a good approximation for all cases.

5.3.2. Two spheres

The case of two spheres is also important for validation of the results, since this introduces separation dis-
tance between the spheres as an additional parameter affecting the error. Also this case validates the transla-
tion theory and the iterative solver (GMRES), which we used in all the multisphere cases for solution of the
resulting linear system, since this brings substantial speed ups due to the rotation-coaxial translation
decomposition.

Fig. 2 demonstrates some results of computations for two perfectly conducting spheres of equal size. The
picture on the right shows patterns of the dimensionless energy density for ka ¼ 10 and dimensionless sepa-
ration d ¼ 2. Comparing these with that shown in Fig. 1 we can see that the influence of the second sphere
is substantial and also orientation of the vector directed from one sphere to the other with respect to the wave
vector s and polarization vector p is important. The chart on the right of Fig. 2 shows computations of the
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error in boundary conditions �ðbcÞ
1 as a function of p0 and d (measured for polarization shown in the left bottom

picture for ka ¼ 5). We can see that computations can be stably performed even for the case when the spheres
touch each other (d ¼ 1). However the truncation number in this case should be larger than predicted by Eq.
(125) if the required accuracy is 10�4 or less. The increase in the truncation number for fixed accuracy depends
on ka and d as explained in the section related to the error bounds. We found then that Eq. (122) (we increased
p by one as discussed) estimates the truncation numbers satisfactory for large and moderate d� 1 while over-
estimates p for d� 1 < 1. The possible reason for that is also mentioned earlier and related to the fact that Eq.
(122) is derived based on a uniform bound of the mode magnitudes, while in reality the series converge for
different points on the surface with different rates, which is especially true for close spheres. So the error
obtained by surface sampling (124) is smaller than given by Eq. (122).

5.3.3. Multiple sphere cases
Many computations were performed for multiple sphere configurations, where we varied the sizes, loca-

tions, and dielectric properties of the spheres, the wave polarization directions and the wavenumber. Figs.
3 and 4 demonstrate some results for random and regular distributions of spheres with the same dielectric
properties �int=� ¼ 10þ 0:1i, lint=l ¼ 1. In the first case the size distribution of the spheres was uniformly ran-
dom with amin=amax ¼ 0:5 and kamax ¼ 10: As the locations were also uniformly randomly generated inside
some bounding box we removed overlapping spheres to leave 100 non-intersecting spheres (some of them were
almost touching their neighbors). GMRES-based iteration process shows exponential convergence in terms of
the absolute error in the expansion coefficients (see Fig. 3). After achieving some prescribed error the iteration
process was terminated and the error in boundary conditions (124) was measured over 38,200 points sampling
the entire surface of 100 spheres. As it is seen this error varies in a wide range, which we relate to the proximity
of the neighbor spheres to a given one. If a sphere is well separated from the other spheres the error was low,
and it substantially increases for touching spheres. In any case, the worst errors were of order of several per-
cents in this case ðp ¼ 26Þ.

The configuration shown in Fig. 4 is computed for a little bit higher wavenumbers and we used truncation
number p ¼ 31. Here the spheres of the same size are arranged in a grid with spacing equal to the sphere radius
s
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Fig. 2. Two pictures on the left illustrate distribution of the dimensionless field energy density over the surface of two perfect conductors
at different polarizations of the incident plane wave shown by vector p at ka ¼ 10. The graph on the right shows dependence of the error in
boundary conditions �ðbcÞ

1 on the dimensionless separation parameter d and p0 for ka ¼ 5. The solid horizontal line corresponds to Eq. (125)
while the dotted curves are computed using Eq. (122) ðC ¼ 1Þ for prescribed j�ð1Þp j ¼ j�ð2Þp j ¼ 10�8; 10�6; 10�4, and 10�2, respectively.
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Fig. 3. Illustration of computations of scattering for 100 spheres of random size and location. The incident wave vector and polarization
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ðd ¼ 2Þ. The nature of convergence of the iteration was the same as in the previous case, while the rate of con-
vergence was a bit faster. The iterative process was terminated at about the same accuracy as in the case of
random distribution, while the error in boundary conditions measured over 47750 points which sampled
the surface with the same density was substantially smaller and did not exceed 2:4� 10�5, which is because
there were no spheres too close to each other in this case.

In any case these tests showed that the numerical process is stable and the error in the solution is reasonably
small. Some additional research is obviously needed to improve the error for the cases when d is close to 1
(while for comparison with experiments a few percent errors may be acceptable).

5.3.4. Computation of amplitude scattering matrix

The scattering matrix is introduced to handle cases of arbitrary wave polarization (due to the linearity of
the scattering problem) and, therefore, does not depend on the polarization angle. If a group of scatterers is to
be identified as a scattering object the amplitude scattering matrix can be computed. If we direct the z axis as
the incident wave vector s and consider the scattering plane which passes through the z axis and the observa-
tion point, which is characterized by spherical coordinates ðh;uÞ and is located far from the scatterer, then by
definition the scattering matrix with components S1; . . . ; S4 that are functions of ðh;uÞ relates components of
the scattered far field and the incident field for electric vector as [2]
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Fig. 4. The same as Fig. 3, but for a regular distribution of 125 spheres of equal size.
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Escat
k

Escat
?

 !
¼ eikr�ikz

�ikr

S2 S3

S4 S1

� �
Ein
k

Ein
?

 !
; ð126Þ
where the symbols i and ^ are related to the components parallel and perpendicular to the scattering plane.
The property of the far scattered field is that the radial component decays faster than the angular compo-

nents, Escat
r ¼ Oðr�2Þ (as r � E satisfies the Helmholtz equation), while Escat

h ¼ Oðr�1Þ, Escat
u ¼ Oðr�1Þ. Therefore

Escat
k ¼ Escat

h , and Escat
? ¼ �Escat

u . The parallel and perpendicular components of the incident field are related to
the x and y components as
Ein
k

Ein
?

 !
¼

cos u sin u

sin u � cos u

� �
Ein

x

Ein
y

 !
; ð127Þ
while for the parallel and perpendicular components of the scattered field are
Escat
k

Escat
?

 !
¼

cos h 0 � sin h

0 1 0

� � cos u sin u 0

sin u � cos u 0

0 0 1

0B@
1CA Escat

x

Escat
y

Escat
z

0B@
1CA: ð128Þ
In computations we can then solve two problems with x and y incident electric field polarization,
Ein
x ¼ ðEin

x ; 0; 0Þeikz; Ein
x ¼ ð0;Ein

y ; 0Þeikz;
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respectively. Then, using Eqs. (126)–(128) we can derive
S2 S3

S4 S1

� �
¼ eikr

�ikr

� ��1
cos h 0 � sin h

0 1 0

� � cos u sin u 0

sin u � cos u 0
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1CA cos u sin u

sin u � cos u

� �
:

ð129Þ

Note then that the far-field pattern can be found from the computed expansion coefficients of scattered field
related to /ðscatÞðqÞm

n and wðscatÞðqÞm
n via (55) for each scatterer in the system of N scatterers:
EscatðrÞ ¼
XN

q¼1

X1
n¼0

Xn

m¼�n

EðscatÞðqÞm
n Sm

n ðr� r0qÞ 	
XN

q¼1

e�iks0 �r0q
X1
n¼0

Xn

m¼�n

EðscatÞðqÞm
n Sm

n ðrÞ

	 eikr

ikr

XN

q¼1

e�iks0 �r0q
X1
n¼0

Xn

m¼�n

i�nEðqÞðscatÞm
n Y m

n ðh;uÞ;

s0 ¼ r

r
¼ ðsin h cos u; sin h sin u; cos hÞ:

ð130Þ
Figs. 5 and 6 show some comparisons of computations using the present method with computations and
experiments of Xu and Gustafson [30], which are well documented and data are available via their web site
[30]. First we compared the computations for the two sphere configuration, where two identical touching
spheres of optical BK7 glass (refractive index kint=k ¼ 2:5155þ 0:0213i, which corresponds to �int=� ¼
6:3273þ 0:1072i, lint=l ¼ 1) were located along the x axis (the center of the first sphere was at the origin of
the reference frame and the center of the other had positive x-coordinate) and the scattering plane was at
u ¼ 0. The size parameter in this case was ka ¼ 7:86. The angular dependences of i11 ¼ jS1j2 and i22 ¼ jS2j2
for which data is available are plotted in Fig. 5. In our computations we used p ¼ 21 which is the same as
the value used in the computations with vector wavefunctions by [30]. The theoretical results using the present
method and the method used by Xu and Gustafson are almost on top of each other and so both of them agree
well with the experimental data.

The case shown in Fig. 6 presents 15 sphere configuration, where the larger spheres were made of BK7 glass
and are the same as in the case shown in Fig. 5. The smaller 12 spheres were acrylic (refractive index
kint=k ¼ 1:615þ 0:008i, which corresponds to �int=� ¼ 2:6082þ 0:0258i, lint=l ¼ 1). All neighboring spheres
0  60 120 180

experiment
Xu
present

two sphere configuration, ka1=ka2=7.86

0  60 120 180
-2

0

2

4

lo
g 10

(i 22
)

experiment
Xu
present

two sphere configuration, ka1=ka2=7.86

Comparison of computations using the present theory with theory and experiments of Xu and Gustafson [30] for amplitudes of the
ing matrix entries. The scattering agglomerate consists of two contacting spheres of the same size and dielectric properties.
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were in contact. The aggregate was oriented by such way that the chain of the larger spheres defines the z axis
and the centers of the 12 smaller spheres are located in the xz plane. The scattered plane is tilted by angle
u ¼ �3:5�. In our computations we used a truncation number of p ¼ 21. The results of our computations visu-
ally coincide with computations of Xu and Gustafson, and also agree well with experiments. Here also the
angular dependence of i12 ¼ jS3j2 is provided.

6. Discussion

As soon as the method and relations for translation of multipole solutions has been validated using example
multiple scattering problems, its applications can be extended to solution of scattering problems from single or
multiple bodies of an arbitrary shape. The method where this can be applied efficiently is the boundary ele-
ment method enhanced by the fast multipole methods (FMM). As a boundary integral formulation is used
in the form of the EFIE (electric field integral equation) or similar (e.g. [7]) and the boundary is discretized
the problem reduces to the problem of solution of a large linear system representing sums of singularities
on the domain boundary. These sums can be computed in a fast way using the FMM, for which translation
operators are in the core of the algorithm. While the method based on the signature functions and translation
of its samples using the diagonal forms of the translation operators is in more common use [7,9], for low and
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moderate frequency problems methods based on function representation via their multipole and local expan-
sion coefficients with matrix-based translation operators can be comparable or more efficient, as they provide
more compact function representation, do not require filtering procedures, and have complexity Oðp3Þ if using
rotation-coaxial translation decomposition. Some results and comparisons for the FMM for the scalar Helm-
holtz equation can be found in Ref. [14] and the results of use of the BEM/FMM for solution of this equation
for large scale problems are reported recently in Ref. [17].

Furthermore, approximate translations of the vector fields, such as the electric field, being performed in a
straightforward way require translation of three field components which increases the size of representation
three times compared to the scalar case. Moreover this may be a source of additional errors and non-zero
divergence of the computed solution as these components are not independent and connected via the diver-
gence free conditions. So as the method of scalar potentials reduces the size of vector field representation
and provides solenoidal fields as solutions, we consider it as a promising method for solution of Maxwell equa-
tions for complex shaped domains at low and moderate frequencies using the FMM. In this context we
showed how the basic singularities (the dyadic Green’s function or the Hertzian dipole) can be expressed
via the Debye potentials, for which the translation theory developed in the present paper can be applied.

7. Conclusions

We have developed a theory that enables the solution of the Maxwell equations via reduction of these equa-
tions to two scalar Helmholtz equations. The translation theory is modified to reduce all operations with vec-
tor functions to operations with the scalar potentials. The theory was validated by solution of the scattering
problem from several spheres using theoretical and a numerical error check in boundary conditions and com-
parisons with theoretical and experimental results of other authors. The theory and computational methods
based on the method presented can be developed further for the efficient solution of various electromagnetic
scattering problems.
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Appendix A

A.1. Operator Dr�t

The simplest (while not the most elegant) way to obtain representation of operator Dr�t is to use a direct
method. In this way we have
Dr�t ¼ ðr� tÞ � r ¼ ðytz � ztyÞ
o

ox
þ ðztx � xtzÞ

o

oy
þ ðxty � ytxÞ

o

oz

¼ i
2

kr tz sin h½e�iuDxþiy � eiuDx�iy � þ ðtx � ityÞ½eiu sin hDz � cos hDxþiy �
�

�ðtx þ ityÞ½e�iu sin hDz � cos hDx�iy �
�
: ð131Þ
According to Eqs. (14) and (15) operators Dx�iy and Dz act on the spherical basis functions Rm
n ðrÞ as follows:
Dz½Rm
n ðrÞ� ¼ am

n�1Rm
n�1ðrÞ � am

n Rm
nþ1ðrÞ;

Dx�iy ½Rm
n ðrÞ� ¼ b�m�1

nþ1 Rm�1
nþ1 ðrÞ � b�m

n Rm�1
n�1 ðrÞ;

ð132Þ
where coefficients am
n and bm

n are specified by Eqs. (16) and (17). Then we can use properties of spherical har-
monics (10) to obtain
Dr�t½Rm
n ðrÞ� ¼ �imtzRm

n ðrÞ þ
i
2
½ðtx þ ityÞcm�1

n Rm�1
n ðrÞ þ ðtx � ityÞcm

n Rmþ1
n ðrÞ�; ð133Þ
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where the coefficients cm
n are specified by Eq. (42). Finally, to get the matrix representation of the operator we

note that
Dr�t

X1
n¼0

Xn

m¼�n

vm
n Rm

n ðrÞ
" #

¼
X1
n¼0

Xn

m¼�n

vm
n Dr�t½Rm

n ðrÞ�

¼
X1
n¼0

Xn

m¼�n

vm
n f�imtzRm

n ðrÞ þ
i
2
½ðtx þ ityÞcm�1

n Rm�1
n ðrÞ þ ðtx � ityÞcm

n Rmþ1
n ðrÞ�g

¼
X1
n¼0

Xn

m¼�n

bvm
n Rm

n ðrÞ ¼
X1
n¼0

Xn

m¼�n

X1
n0¼0

Xn0

m0¼�n0
ðDr�tÞmm0

nn0 v
m0

n0

" #
Rm

n ðrÞ: ð134Þ
This yields Eq. (40).
Another way to derive Eq. (40) is to note that Dr�t is nothing but an infinitesimal rotation operator, which

describes rotation by angle dd about axis directed as t. Indeed for such small rotation transform we have
r0 ¼ rþ dr0; dr0 ¼ ðt� rÞdd; dr0 � rw ¼ ðt� rÞ � rwdd: ð135Þ

Using the Taylor expansion, we have
wðrþ dr0Þ ¼ wðrÞ þ dr0 � rw ¼ wðrÞ þ ðt� rÞ � rwdd: ð136Þ
On the other hand this is a rotation described by real rotation matrix QðddÞ:
wðrþ dr0Þ ¼ RotðQðddÞÞ½wðrÞ�: ð137Þ
Comparing Eqs. (136) and (137), we can see that
Dr�t ¼ �
d

dd
RotðQðdÞÞ

				
d¼0

: ð138Þ
Now we can use a result for representation of infinitesimal rotation operator in the space of expansion coef-
ficients [14], which results in Eq. (40). Note that this operator became especially simple (diagonal) when the
rotation axis is iz. In this case the small rotation angle d is related to the spherical polar angle u alone, and
we have
Dr�iz ½Rm
n ðrÞ� ¼ �

d

dd
RotðQðdÞÞ½Rm

n ðrÞ�
				
d¼0

¼ �jnðkrÞ o

ou
Y m

n ðh;uÞ ¼ �imjnðkrÞY m
n ðh;uÞ ¼ �imRm

n ðrÞ:

ð139Þ

This results in the conversion operators (46). One also can see that if we set tx ¼ ty ¼ 0, tz ¼ 1 in Eq. (133), we
obtain the same result. In fact, Eq. (133) can be thought of as a result of infinitesimal rotations about the axes
x, y, and z, since the infinitesimal rotations commute and so rotation about axis t can be decomposed into
three Cartesian components.

A.2. Operator Dr�t

First we consider action of operator
ðr � rÞðt � rÞ ¼ kr
o

or
Dt ð140Þ
on the spherical basis functions Rm
n ðrÞ, where Dt is defined by Eq. (14). So we obtain
kr
o

or
Dt½Rm

n � ¼
k2r
2

tx�iy ½b�m�1
nþ1 R0mþ1

nþ1 � bm
n R0mþ1

n�1 � þ txþiy ½bm�1
nþ1 R0m�1

nþ1 � b�m
n R0m�1

n�1 � þ 2tz½am
n�1R0mn�1 � am

n R0mnþ1�
� �

;

ð141Þ

where
R0mn ðrÞ ¼ j0nðkrÞY m
n ðh;uÞ; tx�iy ¼ tx � ity : ð142Þ
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Further we can express functions Rm
n ðrÞ in the form
Rm
n ðrÞ ¼

1

am
n

r�njnðkrÞRm
n ðrÞ; ð143Þ
where Rm
n ðrÞ are elementary normalized solutions of the Laplace equation in spherical coordinates
Rm
n ðrÞ ¼ am

n rnY m
n ðh;uÞ; am

n ¼ ð�1Þni�jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
ð2nþ 1Þðn� mÞ!ðnþ mÞ!

s
: ð144Þ
It was shown recently [16] that these functions satisfy the following relation:
ðr � tÞRm
n ¼ �

itx�iyðnþ mþ 2Þðnþ mþ 1ÞRmþ1
nþ1

2ð2nþ 1Þ

� itxþiyðn� mþ 2Þðn� mþ 1ÞRm�1
nþ1 þ 2tzðnþ mþ 1Þðn� mþ 1ÞRm

nþ1

2ð2nþ 1Þ

þ r2 itx�iyRmþ1
n�1 þ itxþiyRm�1

n�1 � 2tzRm
n�1

2ð2nþ 1Þ :

ð145Þ
Therefore, since Dr�t ¼ ðr � rÞðt � rÞ þ k2ðr � tÞ we can combine the above expressions to determine
Dr�t½Rm
n � ¼ �

k
2

txþiy ½b�m
n ðn� 1ÞRm�1

n�1 þ ðnþ 2Þbm�1
nþ1 Rm�1

nþ1 � þ tx�iy ½bm
n ðn� 1ÞRmþ1

n�1 þ ðnþ 2Þb�m�1
nþ1 Rmþ1

nþ1 �
�

� 2tz½ðn� 1Þam
n�1Rm

n�1 þ ðnþ 2Þam
n Rm

nþ1�
�
: ð146Þ
In this derivation we use definition of spherical basis functions Rm
n ðrÞ via orthonormal harmonics (9), (10), rela-

tions (143) and (144), and well-known relations between the spherical Bessel functions of different order and
their derivatives [1]. As action of Dr�t on basis functions is known, expressions for the matrix representation of
this operator, Dr�t can be obtained in the same way as we obtained Dr�t (see Eq. (134)). The final result is writ-
ten out in Eq. (41).
Appendix B

B.1. Error bound for single mode translation

To derive Eq. (113) we use the integral representation of the entries of the translation matrix (see [14]):
ðSjRÞmm0

nn0 ðrq0qÞ ¼
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þin00hn00 ðkrq0qÞin�n0

Z
Su

P n00
s � rq0q

rq0q

� �
Y m0

n0 ðsÞY �m
n ðsÞdSðsÞ; ð147Þ
where integration is taken over the surface of unit sphere, Su. Substituting this into the definition of d
ðq0qÞ
n0 , Eq.

(112), and using Eq. (111) and the addition theorem for spherical harmonics, we obtain
d
ðq0qÞ
n0 ¼

X1
n¼p

jnðkaqÞ
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þin00hn00 ðkrq0qÞin�n0

�
Z

Su

P n00
s � rq0q

rq0q

� � Xn

m¼�n

Y �m
n ðsÞY m

n ðs0Þ
 ! Xn0

m0¼�n0
E
ðscat;q0Þm0
n0 Y m0

n0 ðsÞ
 !

dSðsÞ

¼
X1
n¼p

ð2nþ 1ÞjnðkaqÞ
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þin00hn00 ðkrq0qÞin�n0 1

4p

Z
Su

P n00
s � rq0q

rq0q

� �
P nðs � s0ÞEðq

0Þ
n0 ðsÞdSðsÞ:

ð148Þ

Note then that for arbitrary unit vectors js00j ¼ js0j ¼ 1 we have using the Cauchy–Schwarz inequality and

the norm of the Legendre polynomials
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1

4p

Z
Su

jP n00 ðs � s00ÞjjP nðs � s0ÞjdSðsÞ6 1

4p

Z
Su

jP n00 ðs � s00Þj2dSðsÞ
� �1=2

1

4p

Z
Su

jP n00 ðs � s00Þj2dSðsÞ
� �1=2

¼ 1

2

Z 1

�1

P 2
n00 ðlÞdl

� �1=2
1

2

Z 1

�1

P 2
nðlÞdl

� �1=2

¼ 1

ð2nþ1Þ1=2ð2n00 þ1Þ1=2
: ð149Þ
This bounds functions (148) as follows:
jdðq
0qÞ

n0 j 6
X1
n¼p

ð2nþ 1ÞjjnðkaqÞj
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þjhn00 ðkrq0qÞj

1

4p

Z
Su

P n00
s � rq0q

rq0q

� �				 				jP nðs � s0ÞjjEðq
0Þ

n0 ðsÞjdSðsÞ

6 max
s
jEðq

0Þ
n0 ðsÞj

X1
n¼p

ð2nþ 1Þ1=2jjnðkaqÞj
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þ1=2jhn00 ðkrq0qÞj: ð150Þ
Note that jhn00 j is a monotonically growing function of n00 (e.g. [14]). This means that
Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þ1=2jhn00 ðkrq0qÞj 6 jhnþn0 ðkrq0qÞj

Xnþn0

n00¼jn�n0 j
ð2n00 þ 1Þ1=2

6 ð2nþ 1Þ1=2ð2n0 þ 1Þjhnþn0 ðkrq0qÞj: ð151Þ
The latter bound follows from the fact n0 < p 6 n and Cauchy’s inequality. Substituting Eq. (151) into Eq.
(150), we obtain
jdðq
0qÞ

n0 j 6 ð2n0 þ 1Þmax
s
jEðq

0Þ
n0 ðsÞj

X1
n¼p

ð2nþ 1ÞjjnðkaqÞjjhnþn0 ðkrq0qÞj: ð152Þ
Further we use the corollary of a theorem proven in Ref. [14] (p. 451):
jhnþn0 ðkbþ kaÞj < an0 jhnðkbÞj;

an0 ¼
1; n0 6 ka;

ep
2n0�1


 �1=2jjn0 ðkaÞj�1
; n0 > ka

(
ka; kb > 0; n ¼ 0; 1; . . . ;

ð153Þ
where the inequality for n0 6 ka follows from the prove. This results in Eq. (113).

B.2. Estimate of the Gegenbauer series residual

Consider the behavior of the function
�n ¼ ð2nþ 1ÞjjnðkaÞjjhnðkbÞj; b > a; n� 1; nþ 1

2
> ka: ð154Þ
In this case the following asymptotics apply to the absolute values of spherical Bessel and Hankel functions
[1]:
jjnðkaÞj ¼ p
2ka

� 1=2

jJ nþ1=2ðkaÞj 	 p
2ka

� 1=2

21=3 nþ 1

2

� ��1=3

jAið21=3gðaÞn Þj;

jhnðkbÞj 	 p
2kb

� 1=2

jY nþ1=2ðkbÞj 	 p
2kb

� 1=2

21=3 nþ 1

2

� ��1=3

jBið21=3gðbÞn Þj;

gðaÞn ¼
n� kaþ 1=2

ðkaÞ1=3
; gðbÞn ¼

n� kbþ 1=2

ðkbÞ1=3
;

ð155Þ
where Ai and Bi the Airy functions of the first and second kind [1].
The following two lemmas provide bounds for these functions for positive arguments.

Lemma 1. For x > 0 the Airy function of the first kind AiðxÞ is bounded by
AiðxÞ < Af ðxÞ; f ðxÞ ¼ exp � 2

3
x3=2

� �
; A ¼ Aið0Þ ¼ 3�2=3=Cð2=3Þ < 0:3351: ð156Þ
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Proof. Consider the function RðxÞ ¼ AiðxÞ=f ðxÞ > 0. Since AiðxÞ satisfies Ai00ðxÞ ¼ xAiðxÞ and f 0ðxÞ ¼
�x1=2f ðxÞ, f 00ðxÞ ¼ ðx� 1

2
x�1=2Þf ðxÞ we can determine that R00ðxÞ ¼ 2x1=2R0ðxÞ þ 1

2
x�1=2RðxÞ. Assume then that

there exists x ¼ x for which R0ðxÞ ¼ 0. For this point R00ðxÞ ¼ 1
2
x�1=2
 RðxÞ > 0 so any extremum of RðxÞ

should be a minimum and, therefore, the minimum if exists is unique. We have then
8x > 0;
RðxÞ
RðxÞ

¼ AiðxÞ
RðxÞf ðxÞ

P 1; ð157Þ
which contradicts to the asymptotic behavior of AiðxÞ at large x [1]:
AiðxÞ
RðxÞf ðxÞ

	 1

RðxÞx1=4
! 0: ð158Þ
Thus, there is no minima of RðxÞ for finite x, and RðxÞ decays monotonically, since R0ð0Þ ¼ Ai0ð0Þ=f ð0Þ < 0.
This means that f ðxÞ > AiðxÞ=Aið0Þ. h

Lemma 2. For x > 0 the Airy function of the second kind BiðxÞ is bounded by
BiðxÞ < BgðxÞ; gðxÞ ¼ exp
2

3
x3=2

� �
; Bið0Þ < B < 0:6776 < 1:102Bið0Þ: ð159Þ
Proof. Consider function GðxÞ ¼ BgðxÞ � BiðxÞ for some positive constant B, assuming that GðxÞ > 0. Since
BiðxÞ satisfies Bi00ðxÞ ¼ xBiðxÞ and g0ðxÞ ¼ x1=2gðxÞ, g00ðxÞ ¼ ðxþ 1

2
x�1=2ÞgðxÞ we can determine that G00ðxÞ ¼

B 1
2
x�1=2gðxÞ þ xGðxÞ > 0. This means that G0ðxÞ grows monotonically. Since G0ð0Þ ¼ �Bi0ð0Þ < 0 while

GðxÞ ! 1 as x!1 (at large x, BiðxÞ=gðxÞ ¼ Oðx�1=4Þ [1]) this function has a single zero at some x ¼ x,
which is the minimum of GðxÞ as G00ðxÞ > 0. Note that x depends on B, while it is more convenient to use
the inverse function BðxÞ since G0ðxÞ ¼ 0 provides
B ¼ Bi0ðxÞ
x1=2
 gðxÞ

: ð160Þ
To guarantee that GðxÞ > 0 for any x > 0 we request that GðxÞ > 0 which is equivalent to B > BiðxÞ=gðxÞ
and provides a constraint for selection of point x:
x1=2
 BiðxÞ
Bi0ðxÞ

6 1; ð161Þ
which otherwise can be selected arbitrarily. Choosing x ¼ 0:4 we obtain (one can use tables for BiðxÞ and
Bi0ðxÞ [1])
x1=2
 BiðxÞ
Bi0ðxÞ

� 0:9996 < 1; B ¼ Bi0ðxÞ
x1=2
 gðxÞ

� 0:677599895 < 0:6776: ð162Þ
Note then that B > Bið0Þ ¼ 31=2Aið0Þ � 0:6149 since Bið0Þgð0:4Þ � Bið0:4Þ < 0. h

We note that for non-positive x we have jBiðxÞj 6 Bið0Þ < B. Therefore, if we redefine gðbÞn as
gðbÞn ¼
ðkbÞ�1=3ðn� kbþ 1=2Þ; n > kb� 1=2;

0; n 6 kb� 1=2;

(
ð163Þ
we obtain from (154), (155), (156), and (159) an estimate valid for any nþ 1
2
> ka, n� 1
�n K 1:2
ðnþ 1=2Þ1=3

d1=2ka
exp � 1

3
ðð2gðaÞn Þ

3=2 � ð2gðbÞn Þ
3=2Þ

� �
	 n1=3

d1=2ka
exp � 1

3
ðð2gðaÞn Þ

3=2 � ð2gðbÞn Þ
3=2Þ

� �
:

ð164Þ
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Note that due to exponential decay of these functions with respect to n the first term in the series for �s
p pro-

vides estimate of the entire sum:
�s
p ¼

X1
n¼p

�n ¼ �p þOð�pþ1Þ 	 �p: ð165Þ
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[29] Y.-L. Xu, B.Å.S. Gustafson, Experimental and theoretical results of light scattering by aggregates of spheres, Appl. Opt. 36 (30)

(1997) 8026–8030.
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